organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Guy Crundwell,^a* Justin Linehan,^a James B. Updegraff III,^b Matthias Zeller^b and Allen D. Hunter^b

^aDepartment of Chemistry, Central Connecticut State University, New Britain, CT 06053, USA, and ^bDepartment of Chemistry, Youngstown State University, One University Plaza, Youngstown, Ohio 44555, USA

Correspondence e-mail: crundwellg@mail.ccsu.edu

Key indicators

Single-crystal X-ray study T = 100 KMean σ (C–C) = 0.005 Å R factor = 0.044 wR factor = 0.119 Data-to-parameter ratio = 19.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2,3-Bis(5-bromothien-2-yl)quinoxaline

2,3-Bis(5-bromothien-2-yl)quinoxaline, $C_{16}H_8Br_2N_2S_2$, is a bromo-substituted 2,3-di(thien-2-yl)quinoxaline which can be easily synthesized by the Schiff base reaction between 1,2-phenylenediamine and 1,2-bis(5-bromothien-2-yl)-1,2-ethanedione. The molecule has twofold non-crystallographic symmetry.

Received 13 February 2004 Accepted 23 March 2004 Online 27 March 2004

Comment

Following our earlier structural studies on thenoins (Crundwell et al., 2002a,b) and thenils (Crundwell, Sullivan et al., 2003), and other thiophene-containing molecules such as 2,5diphenyl-3,4-dithien-3-ylcyclopentadien-1-one (Linehan et al., 2003), 4-bromo-2-thiophenecarboxaldehyde (Stacy et al., 2003), and 2,3-di(thien-2'-yl)quinoxaline (Crundwell, Sayers et al., 2003), we report the structure of 2,3-bis(5-bromothien-2yl)quinoxaline, (I). Based on complexes involving 2,3-diphenylquinoxaline (Datta et al., 2002), we believe 2,3-di- and 2,3-bis-substituted thienylquinoxalines will make interesting bidentate ligands when combined with soft metal cations such as Cu^I. This quinoxaline crystallizes with one molecule in the asymmetric unit that packs by stacking in an offset head-to-tail manner. The molecule has twofold non-crystallographic symmetry and the quinoxaline moiety displays a slight deviation from planarity due to steric interactions between 5-bromothien-2-yl rings. The angle between the mean plane of the quinoxaline and the mean plane of ring 1 (containing S1) is 23.68 $(10)^{\circ}$, whereas the angle between the mean plane of the quinoxaline and the mean plane of ring 2 is $47.41 (7)^{\circ}$. A view of (I) is shown in Fig. 1.

Experimental

The title compound, (I), was obtained by reacting equal amounts of 1,2-phenylenediamine and 1,2-bis(5-bromothien-2-yl)-1,2-ethanedione in boiling 95% ethanol (41% yield). After recrystallization from a 50/50 mixture of 95% ethanol and toluene, crystals of (I) were obtained by slow evaporation. Yellow needles were harvested and had a sharp melting point of 368 K. The ¹H NMR (CDCl₃, 400 MHz, δ) spectrum consisted of two multiplets at 8.022 (2H, J = 9.7 Hz) and 7.726 p.p.m. (2H, J = 9.7 Hz) for the quinoxaline H atoms, as well as two doublets for the thienyl ring protons, one doublet from protons at the 3'-positions of the thienyl rings at 7.894 p.p.m. (2H, $J_{3,4} = 4.1$ Hz) and the other doublet from protons at the 4'-positions of the thienyl

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

rings at 7.183 p.p.m. (2H, $J_{4,3} = 4.1$ Hz). When compared to the ¹H NMR spectrum of 2,3-dithien-2-ylquinoxaline (Lukes et al., 2001), the chemical shift for the proton at the 3'-position of the thienyl ring is shifted significantly downfield. This is most likely due to the lack of free rotation in 5-bromothien-2-yl rings in (I), thereby orienting the 3'-position H atoms in a deshielding zone above the other aromatic thienyl ring.

Z = 2

 $D_x = 1.922 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation

Thick plate, yellow

 $0.88 \times 0.35 \times 0.14 \mbox{ mm}$

reflections

 $\theta = 1.9 - 28.4^{\circ}$ $\mu = 5.45 \text{ mm}^{-1}$ T = 100 (2) K

Cell parameters from 7531

Crystal data

$C_{16}H_8Br_2N_2S_2$
$M_r = 452.18$
Triclinic, P1
a = 8.8701 (9) Å
b = 9.0664 (9) Å
c = 11.1751(11) Å
$\alpha = 86.380 \ (2)^{\circ}$
$\beta = 79.998 \ (2)^{\circ}$
$\gamma = 62.033 \ (2)^{\circ}$
$V = 781.51 (13) \text{ Å}^3$
· · · · · · · · · · · · · · · · · · ·

Data collection

Bruker SMART APEX	3818 independent reflections
diffractometer	3126 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.044$
Absorption correction: multi-scan	$\theta_{\rm max} = 28.4^{\circ}$
(SADABS; Sheldrick, 2003)	$h = -11 \rightarrow 11$
$T_{\min} = 0.018, \ T_{\max} = 0.466$	$k = -12 \rightarrow 12$
7531 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.044$	$w = 1/[\sigma^2(F_o^2) + (0.0927P)^2]$
$wR(F^2) = 0.119$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.85	$(\Delta/\sigma)_{\rm max} = 0.001$
3818 reflections	$\Delta \rho_{\rm max} = 1.39 \text{ e} \text{ Å}^{-3}$
199 parameters	$\Delta \rho_{\rm min} = -1.08 \text{ e } \text{\AA}^{-3}$

H atoms were placed in calculated positions, with a C-H distance of 0.95 Å, and were included in the refinement in riding-model approximation, with $U_{iso} = 1.2U_{eq}$ of the carrier atom.

Data collection: SMART (Bruker, 1997-1999); cell refinement: SMART; data reduction: SAINT (Bruker, 1997–1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

GC acknowledges the Donors of the American Chemistry Society Petroleum Research Fund for primary support of this

A view of (I). Displacement ellipsoids are drawn at the 50% probability level.

research (#38867-B5m). This research was also funded in part by CCSU-AAUP research grants and CCSU Faculty-Student Research Grants. MZ and JU were supported by NSF grant 0111511, and the diffractometer was funded by NSF grant 0087210, by Ohio Board of Regents grant CAP-491, and by YSU. The authors thank Dr Martha Morton of the University of Connecticut for measuring the ¹H NMR spectrum.

References

- Bruker (1997-1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA
- Crundwell, G., Meskill, T., Sayers, D., Kantardjieff, K. (2002a). Acta Cryst. E58, 0666-0667.
- Crundwell, G., Meskill, T., Sayers, D., Kantardjieff, K. (2002b). Acta Cryst. E58. 0668-0670.
- Crundwell, G., Sayers, D., Herron, S. R., Kantardjieff, K. (2003). Acta Cryst. E59. 0314-0315.
- Crundwell, G., Sullivan, J., Pelto, R., Kantardjieff, K. (2003). J. Chem. Crystallogr. 33, 239-244.
- Datta, D., Naskar, J. P., Chowdhury, S. & Drew, M. G. B. (2002). New J. Chem. 26, 170-175.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Linehan, J., Crundwell, G., Herron, S. R., Kantardjieff, K. (2003). Acta Cryst. E59, 0466-0468.
- Lukes, V., Breza, M., Végh, D., Hrdlovic, P., Krajèovic, J. & Laurinc, V. (2001) Synth. Met. 124, 279-286.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
- Stacy, V., Crundwell, G., Updegraff, J. B. III, Zeller, M. & Hunter, A. D. (2003). Acta Cryst. E59, o1812-o1813.